Asymptotic Properties and Optimization of Some Non-Markovian Stochastic Processes
نویسندگان
چکیده
Jǐŕı Anděl, Sergej Čelikovský, Marie Demlová, Jan Flusser, Petr Hájek, Vladimı́r Havlena, Didier Henrion, Yiguang Hong, Zdeněk Hurák, Martin Janžura, Jan Ježek, George Klir, Ivan Kramosil, Tomáš Kroupa, Petr Lachout, Friedrich Liese, Jean-Jacques Loiseau, Frantǐsek Matúš, Radko Mesiar, Karol Mikula, Jǐŕı Outrata, Jan Seidler, Karel Sladký Jan Štecha, Olga Štěpánková, Frantǐsek Turnovec, Igor Vajda, Jǐrina, Vejnarová, Milan Vlach, Miloslav Vošvrda, Pavel Źıtek
منابع مشابه
Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملNon-Markovian stochastic epidemics in extremely heterogeneous populations
A feature often observed in epidemiological networks is significant heterogeneity in degree. A popular modelling approach to this has been to consider large populations with highly heterogeneous discrete contact rates. This paper defines an individual-level non-Markovian stochastic process that converges on standard ODE models of such populations in the appropriate asymptotic limit. A generalis...
متن کاملStochastic Quantization of Real-Time Thermal Field Theory
We use the stochastic quantization method to obtain the free scalar propagator of a finite temperature field theory formulated in Minkowski spacetime. First we use the Markovian stochastic quantization approach to present the two-point function of the theory. Second, we assume a Langevin equation with a memory kernel and Einstein’s relations with colored noise. The convergence of the stochastic...
متن کاملIntrinsic scales for high-dimensional LEVY-driven models with non-Markovian synchronizing updates
We propose stochastic N -component synchronization models (x1(t), . . . , xN (t)), xj ∈ Rd, t ∈ R+, whose dynamics is described by Lévy processes and synchronizing jumps. We prove that symmetric models reach synchronization in a stochastic sense: differences between components d (N) kj (t) = xk(t)−xj(t) have limits in distribution as t → ∞. We give conditions of existence of natural (intrinsic)...
متن کاملMean first-passage times in confined media: from Markovian to non-Markovian processes
We review recent theoretical works that enable the accurate evaluation of the mean first passage time (MFPT) of a random walker to a target in confinement for Markovian (memory-less) and non-Markovian walkers. For the Markovian problem, we present a general theory which allows one to accurately evaluate the MFPT and its extensions to related first-passage observables such as splitting probabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kybernetika
دوره 45 شماره
صفحات -
تاریخ انتشار 2009